Deel 1: Introductie

Stap 1: Teaser
Inleiding.

Demo simulatie van auto.

Enige gevoel krijgen voor achterliggende theorie.

Begrijpen PLC sweep, link met Arduino loop.

Hoe giet ik de theorie in de vorm van een programma.

Waar komt de besturing en begrijpen code-generatie.
Visualisatie en de rol van objecten, klassen en overerving hierin.
2e demo: wat moet realistisch zijn en wat doet er minder toe.

Stap 2: Wat kun je na deze les

Beoordelen of object georienteerd programmeren in een gegeven situatie voordelen biedt en
beargumenteren waarom.
Instance variabelen creéren in de constructor, in afwijking van sommige andere

programmeertalen (!)
Een eenvoudige simulatie maken van een optrekkende auto, met gebruikmaking van OOP,
met name inkapseling.

Stap 3: Ophalen benodigde voorkennis

ERD’s en UML class diagrams.
Structs.

Functies en parameters.
Interface en implementation.

Deel 2: Kern

Stap 4: Uitleg van de nieuwe lesstof

Korte samenvatting van de bijbehorende videoles, gelegenheid tot vragen.

Demo van maken klassen Animal, Dog en Bird met op de juiste plekken de methods __init
move en wagTail en een polymorfe lijst van dieren. Dog en Bird hebben veschillende move
methods. De methods drukken als tekst af wat het betreffende dier precies doet. In een reéle
situatie zullen zulke functies per soort iets heel verschillends doen.

Stap 5: Voorbeelden en vragen door docent

Bekijken broncode PLC simulator, met name modules scene, engine en vectors.
Module vectors werkt met tuples en globale functies, wat zijn argumenten voor en tegen een
class Vector met methods in plaats van globale functies.

(C) GEATEC engineering, license: Creative Commons



Stap 6: Oefenen met de nieuwe lesstof

Maak een klasse Car waarvan de objecten instance variables position en speed hebben.
Geef Car een method drive (self, acceleration, deltaTime) die:

* De nieuwe snelheid berekent volgens self.speed += acceleration * deltaTime

* De nieuwe plaats berekent volgens self.position += self.speed * deltaTime

Geef Car ook een method report die self.position en self.speed afdrukt.
Instantieer in je hoofdprograma object car van class Car en roep van dit object in een while-
lus herhaald methods drive en report aan.

Stap 7: Feedback op gemaakte oefening

Een of meerdere leden van elke groep delen hun programma, docent en medestudenten
geven feedback, evt. na vragen om nadere uitleg.

Vraag: Waarom is het vaak (maar niet altijd) verstandig het gebruik van niet-lokale variabelen
te vermijden?

Deel 3: Afronding

Stap 8: Evalueren of deze les goed “geland” is
Eén of meer leden van elke groep stellen vragen en/of geven tips en/of tops.

Stap 9: Huiswerk om je de lesstof verder eigen te maken

Zie opdrachten-tab in MS-Teams.

Inleveren van de uitgewerkte opdrachten die bij een les horen is, samen met een positief
verlopen eind-assessment, een noodzakelijke voorwaarde voor een voldoende en dient
uiterlijk 2 volle dagen voor de volgende les plaats te vinden, uitsluitend op de geéigende wijze
in MS-Teams.

De resultaten worden deels in de volgende les, deels individueel besproken. Maak de
opdrachten op het door jou gekozen niveau zo goed mogelijk, maar wees ook niet bang om
fouten te maken. Het gaat erom dat je een serieuze poging waagt en de docenten je indien
nodig kunnen helpen om verder te komen.

—//--

(C) GEATEC engineering, license: Creative Commons



	Deel 1: Introductie
	Stap 1: Teaser
	Stap 2: Wat kun je na deze les
	Stap 3: Ophalen benodigde voorkennis

	Deel 2: Kern
	Stap 4: Uitleg van de nieuwe lesstof
	Stap 5: Voorbeelden en vragen door docent
	Stap 6: Oefenen met de nieuwe lesstof
	Stap 7: Feedback op gemaakte oefening

	Deel 3: Afronding
	Stap 8: Evalueren of deze les goed “geland” is
	Stap 9: Huiswerk om je de lesstof verder eigen te maken


