
Eindopdracht "Zeeslagje" keuzevak Python

Randvoorwaarden
Voor de eindopdracht mag je binnen je eigen groep samenwerken. Code overnemen van
andere groepen of van derden is niet toegestaan. De assessment is individueel, zonder
raadpleging van anderen binnen of buiten je groep.

Zorg dat je elke regel code die deel uitmaakt van de uitgewerkte eindopdracht volledig snapt
en kunt uitleggen, dit is een voorwaarde voor succesvolle afronding van dit vak. Bereid je
assessment voor, zodat je er goed “in zit”. Alleen werkende code is dus NIET voldoende.

Voeg een klasse-diagram toe, bij voorkeur gegenereerd uit je code.

Maak een helder testplan met verifieerbare criteria. Test je applicatie grondig zodat je niet
voor verrassingen komt te staan, leg het resultaat vast in een testrapport. Voeg dit toe aan
wat je oplevert en houdt het bij de hand tijdens de assessment.

(C) GEATEC engineering, license: Creative Commons

Hints
Begin zo eenvoudig mogelijk, pas versiebeheer toe, met git/github of simpelweg met folders
op datum en bewaar alle werkende versies, zodat je niet met lege handen zit op je
assessment. Daarna kun je de zaak optuigen (het gaat tenslotte over schepen) tot je er niet
meer tijd in wil steken.

Deze werkwijze heet "timeboxing". Maak van te voren een "MoSCoW" (Must have, Should
have, Could have, Won't have) analyse zodat je je prioriteiten helder hebt en niet steeds hoeft
na te denken over "what's next". Bewaar die analyse om tijdens de assessment te laten zien
dat je systematisch gewerkt hebt.

Als je demo complex is, maak dan een filmpje (ten hoogste 5 minuten). Dan kan het
demonstratie-duiveltje geen roet in het eten gooien.

Ontwerp- en programmeer-stijl
De opzet dient object-georiënteerd te zijn. De scheeps-klassen Patrolboat, Cruiser en

AircraftCarrier erven van klasse Ship. Elk schip kent haar eigen positie en kan vertellen wat
voor schip zij is. Er is een object van klasse Sea en een object van klasse (Game)Engine.
Ook een eventuele score-display is een object. Al deze objecten samen bevinden zich in een
object van klasse World. Er kunnen nog meer klassen en objecten zijn.

De hier gegeven benamingen zijn maar voorbeelden. Kies echter betekenisvolle namen.
Namen als i, j en k zijn bij uitstek onwenselijk. De naam van een klasse of object is (of bevat)
meestal een zelfstandig naamwoord (AircraftCarier, redSea, hmsPotemkin), de naam van een
functie is (of bevat) bijna altijd een werkwoord (start, shoot, tellNameAndKind, getScore). De
naam van een boolean is meestal een bijvoeglijk naamwoord, predicaat of een voltooid
deelwoord (horizontal, wasHit, sunk). Wees nauwkeurig. Noem iets geen ‘ship’ als het de
index van een schip in een lijst is (maar shipIndex). Kort geen namen af.

Indien een getal in je code meer dan 1 x voor komt in dezelfde betekenis, geef ‘t dan een
naam en gebruik die. Plaats waar nodig commentaar om de motivatie achter ontwerpkeuzen
te documenteren. Zorg echter vooral dat je broncode zoveel mogelijk “voor zichzelf spreekt”.

Maak objecten zo zelfstandig mogelijk.

Deze aanpak leidt tot een flexibel ontwerp waaraan gemakkelijk zaken toe te voegen zijn,
zoals meer dan twee spelers of nieuwe soorten schepen.

Niveau 1
Maak het spel "Zeeslagje" waarbij het de bedoeling is dat je schepen van je tegenspeler, voor
de gelegenheid aangeduid met "de vijand", tot zinken brengt. Het spel wordt gespeeld met 2
spelers, iedere speler heeft xijn eigen "helft" van de zee, die uit 20 x 20 rechthoekige vakjes

(C) GEATEC engineering, license: Creative Commons

bestaat. Er zijn drie soorten schepen: patrouilleboten (2 vakjes), kruisers (3 vakjes) en
vliegdekschepen (4 vakjes). Schepen kunnen zowel horizontaal als verticaal liggen. De
spelers kunnen elkaars schepen niet zien. Iedere speler voert x'n schepen dus voorafgaand
in terwijl de andere speler niet kijkt. De speler die de beurt heeft mag schieten. Als xij iets
raakt mag xij doorgaan met schieten. Als xij niets raakt is x'n beurt voorbij. De speler die het
eerst alle schepen van de ander heeft vernietigd, heeft gewonnen. Het user interface mag
werken met tekst, bijv. X voor een deel van een schip en - voor een leeg vakje. Richten mag
worden gedaan door middel van intypen van coordinaten. Extra: Zorg dat je kunt richten met
het keyboard zonder de coordinaten in te typen.

Niveau 2
Zelfde als bij niveau 1, maar nu speel je tegen de computer. De geautomatiseerde
tegenstander is een object van class Agent. Let op: Het API van de menselijke speler en van
de Agent zijn deels hetzelfde, omdat beiden in principe op dezelfde manier met het
"singleton" (Google) object van klasse GameEngine communiceren. Los dit op met
overerving van een abstracte Player basisklasse en een polymorfe verzameling van twee of
meer Player's. Extra 1: Zorg dat de computer tegen zichzelf kan spelen. Exra 2: Zorg dat er,
naast een Agent, 2 of meer menselijke spelers kunnen zijn.

Niveau 3
Zelfde als bij niveau 2, maar nu met een GUI. Dit mag bijv. een multiline text window zijn voor
de zee met daarop zichtbaar de geraakte schepen en mouse- en/of keyboard control voor
richten en buttons voor schieten. Extra 1: Een zee-background met plaatjes van schepen.
Extra 2: Wil je helemaal los gaan? Maak dan een multiplayer game dat op meerder
computers kan draaien waarbij de spelers verbonden zijn via "kale" TCP/IP sockets of web
sockets. Het mag een desktop game of een browser game zijn. Voor een demo tijdens de
assessment is het OK als de spelers op de zelfde fysieke computer spelen.

(C) GEATEC engineering, license: Creative Commons

